Page last updated: 2024-12-04

N-[4-methyl-1-oxo-1-(1-oxohexan-2-ylamino)pentan-2-yl]carbamic acid (phenylmethyl) ester

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID2532
CHEMBL ID3194728
CHEBI ID93910
SCHEMBL ID2250091

Synonyms (17)

Synonym
HMS3266A12
NCGC00024594-01
BIO1_000392
BIO1_000881
BIO1_001370
FT-0636753
BRD-A84045418-001-01-5
SCHEMBL2250091
CHEMBL3194728
sr-01000597651
SR-01000597651-1
CHEBI:93910
n-[4-methyl-1-oxo-1-(1-oxohexan-2-ylamino)pentan-2-yl]carbamic acid (phenylmethyl) ester
Q27165664
n-cbz-leu-nleu-al;benzylcarbonyl-leu-nleu-h
BCP34012
bdbm512927

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
leucine derivativeAn amino acid derivative resulting from reaction of leucine at the amino group or the carboxy group, or from the replacement of any hydrogen of leucine by a heteroatom. The definition normally excludes peptides containing leucine residues.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (25)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, CruzipainTrypanosoma cruziPotency0.00230.002014.677939.8107AID1476; AID1478
TDP1 proteinHomo sapiens (human)Potency28.23200.000811.382244.6684AID686978; AID686979
EWS/FLI fusion proteinHomo sapiens (human)Potency9.19470.001310.157742.8575AID1259252; AID1259255
cytochrome P450 2C19 precursorHomo sapiens (human)Potency10.00000.00255.840031.6228AID899
vitamin D3 receptor isoform VDRAHomo sapiens (human)Potency70.79460.354828.065989.1251AID504847
cytochrome P450 3A4 isoform 1Homo sapiens (human)Potency15.84890.031610.279239.8107AID884; AID885
lethal factor (plasmid)Bacillus anthracis str. A2012Potency12.58930.020010.786931.6228AID912
Gamma-aminobutyric acid receptor subunit piRattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-1Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit deltaRattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-5Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-3Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-1Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-2Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-4Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-3Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-6Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-3Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
GABA theta subunitRattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit epsilonRattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Replicase polyprotein 1abSevere acute respiratory syndrome-related coronavirusIC50 (µMol)10.69000.00402.92669.9600AID1805801
Replicase polyprotein 1abSevere acute respiratory syndrome coronavirus 2IC50 (µMol)10.69000.00022.45859.9600AID1805801
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (1)

Processvia Protein(s)Taxonomy
symbiont-mediated perturbation of host ubiquitin-like protein modificationReplicase polyprotein 1abSevere acute respiratory syndrome-related coronavirus
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (12)

Processvia Protein(s)Taxonomy
3'-5'-RNA exonuclease activityReplicase polyprotein 1abSevere acute respiratory syndrome-related coronavirus
RNA-dependent RNA polymerase activityReplicase polyprotein 1abSevere acute respiratory syndrome-related coronavirus
cysteine-type endopeptidase activityReplicase polyprotein 1abSevere acute respiratory syndrome-related coronavirus
mRNA 5'-cap (guanine-N7-)-methyltransferase activityReplicase polyprotein 1abSevere acute respiratory syndrome-related coronavirus
mRNA (nucleoside-2'-O-)-methyltransferase activityReplicase polyprotein 1abSevere acute respiratory syndrome-related coronavirus
5'-3' RNA helicase activityReplicase polyprotein 1abSevere acute respiratory syndrome-related coronavirus
K63-linked deubiquitinase activityReplicase polyprotein 1abSevere acute respiratory syndrome-related coronavirus
K48-linked deubiquitinase activityReplicase polyprotein 1abSevere acute respiratory syndrome-related coronavirus
3'-5'-RNA exonuclease activityReplicase polyprotein 1abSevere acute respiratory syndrome coronavirus 2
RNA-dependent RNA polymerase activityReplicase polyprotein 1abSevere acute respiratory syndrome coronavirus 2
cysteine-type endopeptidase activityReplicase polyprotein 1abSevere acute respiratory syndrome coronavirus 2
mRNA 5'-cap (guanine-N7-)-methyltransferase activityReplicase polyprotein 1abSevere acute respiratory syndrome coronavirus 2
mRNA (nucleoside-2'-O-)-methyltransferase activityReplicase polyprotein 1abSevere acute respiratory syndrome coronavirus 2
mRNA guanylyltransferase activityReplicase polyprotein 1abSevere acute respiratory syndrome coronavirus 2
RNA endonuclease activity, producing 3'-phosphomonoestersReplicase polyprotein 1abSevere acute respiratory syndrome coronavirus 2
ISG15-specific peptidase activityReplicase polyprotein 1abSevere acute respiratory syndrome coronavirus 2
5'-3' RNA helicase activityReplicase polyprotein 1abSevere acute respiratory syndrome coronavirus 2
protein guanylyltransferase activityReplicase polyprotein 1abSevere acute respiratory syndrome coronavirus 2
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (2)

Processvia Protein(s)Taxonomy
double membrane vesicle viral factory outer membraneReplicase polyprotein 1abSevere acute respiratory syndrome-related coronavirus
double membrane vesicle viral factory outer membraneReplicase polyprotein 1abSevere acute respiratory syndrome coronavirus 2
plasma membraneGamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (30)

Assay IDTitleYearJournalArticle
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1805801Various Assay from Article 10.1021/acs.jmedchem.1c00409: \\Perspectives on SARS-CoV-2 Main Protease Inhibitors.\\2021Journal of medicinal chemistry, 12-09, Volume: 64, Issue:23
Perspectives on SARS-CoV-2 Main Protease Inhibitors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (8)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's2 (25.00)24.3611
2020's6 (75.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.44

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.44 (24.57)
Research Supply Index2.20 (2.92)
Research Growth Index4.64 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.44)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other8 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]